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Abstract: 

In this document, I will model and back test our portfolio with various proposed models.  It goes without saying that the 

portfolio with the greatest out-of-sample performance will be used for our current and future portfolio.  The out-of-

sample performance will be evaluated through a utility loss value derived in the introduction as well as through a 

portfolio performance comparison against the S&P 500 index and 1/N Portfolio rule.  I found that the industry and 

constant correlation model tends to work best in out-of-sample performance. 
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Introduction 

The evaluation for each model is mainly motivated through the methods worked in Kan and Zhou (2007).  The main 

portfolio problem is deciding on appropriate weights for securities in a portfolio to maximize return and minimize risk.  

Markowitz (1952)1 has shown that for a given level of return generated through a Portfolio, there exists a set of weights 

that minimizes risk. 

Let 𝜇 be a 𝑁 × 1 matrix of asset expected returns and Σ be a 𝑁 × 𝑁 covariance matrix of asset returns.  Thus, the 

portfolio expected return is 𝜇𝑝 = 𝑤′𝜇 and portfolio risk (variance) is 𝜎𝑝
2 = 𝑤′Σ𝑤 where 𝑤 is a 𝑁 × 1 vector of portfolio 

weights.  In a perfect world, both parameters (𝜇 & Σ) are known and the investors allocate their portfolio according to 

their risk preference or using the Power Utility function: 

𝑈(𝑤) = 𝜇𝑝 −
𝜆

2
𝜎𝑝

2 

Where 𝜆 is an investors’ risk aversion coefficient.  Under optimality, the weights (𝑤∗) are allocated as such: 

𝑤∗ =
1

𝜆
Σ−1𝜇 

Since both parameters aren’t observable, we need to estimate them (Σ̂ & �̂�).  Denote our optimal portfolio weights with 

estimated inputs as �̂�∗.  Many methods have been proposed in improving future estimates of these two inputs and we 

will look at them in this report.  To evaluate these methods, Kan and Zhou (2007) proposed a loss function: 

𝐿(𝑤, �̂�∗) = 𝑈(𝑤∗) − 𝑈(�̂�∗) 

This function has a simple and intuitive meaning where the first term is the ex-post optimized portfolio’s utility and the 

second term is the estimated ex-ante optimal portfolio out-of-sample performance.  Since the first term is theoretically 

optimal, almost all out-of-sample performance is suboptimal and thus, 𝐿(𝑤, �̂�∗) is strictly positive.  Our main objective 

is to minimize this loss function toward zero. 

The rest of this paper will be outlined as such: the methodology, introduction to various methods and estimated optimal 

weighting and finally, table and chart of performance measures. 

Methodology 

We will evaluate these models through sourcing historical estimates from 1/1/2005 – 1/1/2010 and testing out-of-

sample performance from 1/1/2010 – 1/1/2014.  Monthly returns will be used. The ETFS XLS and XPH will be excluded 

due to insufficient data for a total of N = 20 securities.  Excel Solver with GRG non-linear optimization will be used since 

there is no closed-form solution for below constraints.  Returns are calculated as the risk premium where 𝑟𝑡 = 𝑅𝑡 − 𝑅𝑓 

                                                           
1 Portfolio Selection Harry Markowitz The Journal of Finance, Vol. 7, No. 1. (Mar., 1952), pp. 77-91. 

http://apps.olin.wustl.edu/faculty/zhou/KZ_JFQA_W07.pdf


and the Risk free rate is the U.S 10 Year Treasury Bond Ask Yield lagged by one period.  Lastly, Dividends are excluded for 

the simplicity of data arrangements and calculations.  All percentages represented have already been multiplied by 100. 

To optimize, we set lambda equal to 1 and create two simple constraints (fully allocated portfolio and No short sale): 

𝑤∗′1 = 1 

𝑤𝑖
∗ ≥ 0   ∀ 𝑖. . 𝑁 

Naïve Model 

The Naïve Model is the benchmark model that we are going to test others against.  The Naïve model makes the 

assumption that future parameters is the same as the historical estimate.  Through countless research, this is not the 

case but we are going to include it anyway to gauge the magnitude of improvements from other models. 

We obtain the following weights for the Portfolio: 

 

All other stocks have a weighting of zero.  This is primarily because (under the constraint of short-sale): 

1. Strong positive covariance provide no benefits in diversification 

2. From (1), stocks are then ranked by historical return to risk 

Averaging Models 

For the next two set of results, only the correlations between equities are changed.  The mean return premium and 

variance will remain as the naïve model forecast.  

Naïve Averaging 

In Naïve Averaging, all pairwise correlations are set equal to the average of all pairwise correlations in the matrix. 



Optimizing across the estimate period we come upon the below weighting: 

 

Industry Averaging 

In industry averaging, we aggregate securities into groups by industry effects.  The correlations within each group and 

with other groups are averaged and set.  In The Fund’s portfolio, we divide up our 20 stocks into 8 main industries as 

specified by GIC Classifications.  They are Consumer Discretionary, Consumer Staples, Energy, Financials, Industrials, 

Information Technology, Materials and Utilities with 3, 4, 2, 3, 3, 2, 2, 1 stocks in each sector respectively. 

Optimizing across these averages, we find a portfolio similar to the Naïve averaging model.  However, there is a lot more 

non-zero weighted securities within the portfolio: 

 



Single-Index Model 

Pioneered by Sharpe, the single-index model (SIM) reduces the number of estimation inputs by assuming that all 

relevant securities have a return generating process dominated by one single index or: 

𝑟𝑡,𝑖 = 𝛼𝑖 + 𝛽𝑖𝑟𝑡,𝐼 + 𝜖𝑡   ∀ 𝑖 

𝜖𝑡~𝑖. 𝑖. 𝑑(0, 𝜎𝑒
2) 

Where 𝑟𝑡 is the risk premium generated at time T and by construction 𝜖𝑡 is an i.i.d noise process.  Since population 

values of Alpha and Beta cannot be directly observed, we need to once again estimate them through regression analysis.  

Taking our estimates �̂�, �̂�, we can calculate the covariance matrix and mean return vector: 

Σ = Β̂Β̂′𝜎𝐼
2 + 𝜎𝑒

2 

𝜇 = Α̂ + Β̂𝜇𝐼  

Where Β̂ is an 𝑁 × 1 vector of estimated Beta, Α̂ is an 𝑁 × 1 vector of estimated Alpha, 𝜎𝑒
2 is a diagonal 𝑁 × 𝑁 matrix of 

unsystematic variance uncaptured by the SIM, 𝜇𝐼 & 𝜎𝐼 are the mean returns and variance of the index respectively.  In 

financial time-series, both beta and alpha are subject to estimation uncertainty as the nature of the firm and the 

economic environment change.  In the next two sub-sections, we will measure out-performance through both 

unadjusted beta and adjusted beta.  Alpha, under the Capital Asset Pricing Model, is assumed to be zero and any 

indifference is due to sampling bias.  Furthermore, it is extremely hard to predict alpha and we will make the prior 

assumption that it is zero. 

Unadjusted Beta Estimation 

In this section, we will take the plug-and-play approach to estimating beta.  We will use the S&P 500 as the single-index 

since it contains many stocks within our portfolio.  Furthermore, Mean Return of the S&P 500 input will be the historical 

geometric premium from Damodaran (2014) between 2004 and 2013. 

Using the optimizer, we come upon a rather peculiar results where our portfolio is optimized when we put 100% of the 

portfolio weight into Gold Miners ETF.  This is most likely because that since all pairwise covariance is generated through 

a single-index, the optimizer tends to rank each stock by their return and volatility against the market and put all its 

weight toward that single stock. 

Adjusted Beta Estimation 

Since Betas and Alphas vary over time for securities, this estimation risk can be reduced through adjusting the current 

Beta for the next forecast period.  Elton, Gruber et al. (2014)2 summarizes the studies done on Beta adjustments and 

found two significant study of Blume Adjustment and Vasicek Adjustment.  Klemkosky and Martin (1975) concluded that 

                                                           
2 Elton, Edwin J., Martin J. Gruber, Stephen J. Brown, and William N. Goetzmann. Modern portfolio theory and investment analysis. 
John Wiley & Sons, 2014. 

http://www.stern.nyu.edu/~adamodar/pc/datasets/histretSP.xls


the Vasicek Adjustment tend to outperform the Blume Adjustment methodology and dominate the Naïve method of 

estimation as well.  In this study, we will specifically look at the Vasicek adjustment to our Beta portfolio. 

The Vasicek adjustment is a Bayesian method in improving estimate through assuming a prior distribution for the Beta of 

each stock.  In our application, we will assume a prior of historical industry beta and adjust each stock’s beta to be a 

weighted average of the historical industry beta and the stock’s sampled beta.  Weighting is determined by the relative 

Standard Error of the Beta estimator in the linear regression.  Higher the error, the more the Beta is adjusted toward the 

industry standard. 

�̂�𝑖 =
𝑉𝑎𝑟(�̂�)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑉𝑎𝑟(�̂�𝑖) + 𝑉𝑎𝑟(�̂�)̅̅ ̅̅ ̅̅ ̅̅ ̅̅
(�̂�𝑖) +

𝑉𝑎𝑟(�̂�𝑖)

𝑉𝑎𝑟(�̂�𝑖) + 𝑉𝑎𝑟(�̂�)̅̅ ̅̅ ̅̅ ̅̅ ̅̅
(𝛽𝑝𝑟𝑖𝑜𝑟)     

Where 𝑉𝑎𝑟(�̂�𝑝) is the Average Variance of Stock Betas that decreases as 𝑁 increases and 𝑉𝑎𝑟(�̂�𝑖) is the Variance of the 

Beta of ith stock. 

Optimizing the portfolio, the weighting is now 100% on stock PEG.  This is in-align with previous explanation for 100% in 

Gold Miners ETF.  However, the difference is that this portfolio significantly produces better out-of-sample performance 

Fama & French Three-Factor Model 

Fama and French (1992) proposes adding two additional cross-sectional variable to the CAPM to improve explanatory 

power of the model in individual stock returns.  The variables they propose are Market Equity and Price to Book ratios 

and found that high value, small companies tend to outperform in expected returns.  The variables are imposed in the 

regression through tracking portfolios of Small over Big Market equity and Low over High Price to Book ratio.  

𝑟𝑡 = 𝛼 + 𝛽1𝑟𝑚 + 𝛽2𝑟𝑠𝑚𝑏,𝑡 + 𝛽3𝑟ℎ𝑚𝑙,𝑡 + 𝜖𝑡 

In this section, I will model the portfolio on these characteristics to obtain better covariance and expected return 

estimates.  Expected Returns of each stock will be estimated as the output from the three factor model using the sample 

estimation.  The data for the tracking portfolio SMB and HML are retrieved from Kenneth French’s data library. 

Feeding the numbers into the optimizer, we come upon an optimal weight of 78% in Gold Miners ETF and 22% in Home 

Depot. 

Chen, Roll, Ross Model 

Chen, Roll and Ross (1986) developed a fundamental index model where the variables in the return-generating process 

can be explained by economic factors.  Their work is based on the financial theory that all stocks are priced from a 

consensus of expectations for future conditions.  Any source of surprise as new information emerges will adjust the price 

of the stock.  Similar to the structure of Arbitrage Pricing Theory, we will hypothesize a small set of significant economic 

factors that will adjust stock returns.  

http://www.bengrahaminvesting.ca/Research/Papers/French/The_Cross-Section_of_Expected_Stock_Returns.pdf
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://rady.ucsd.edu/faculty/directory/valkanov/pub/classes/mfe/docs/ChenRollRoss_JB_1986.pdf


 Difference in yield from long-term U.S government bonds and long-term corporate bonds 

 Difference in term structure through long-term U.S government bonds and short-term U.S treasury bills 

 Difference in Actual and Expected Monthly Change in Inflation 

 Difference in Actual and Expected Monthly Change in US Production 

 Market Returns (S&P 500) 

Regressing the factors with each stock return and optimizing the portfolio with sampled mean return and factor 

variance, we come upon the optimal portfolio. 

 

  



Loss Performance 

Below is a table of all models and their out-of-sample performance in comparison to the optimal utility.  Note that the 

optimal Utility in the test sample is -2.25508. 

Model Mean Return Variance U(W*) Utility Loss 

Industry Averaging 0.711590277 6.869401 -2.72311 0.468032 

Constant Averaging 0.773140317 7.120551 -2.78714 0.532057 

Naïve Model 0.890076122 8.331002 -3.27542 1.020296 

S&P 500 Index 0.92955556 16.5262627 -7.33358 5.078496 

Single-Index (Adj) -0.20882026 15.5459 -7.98177 5.726692 

Fama & French 0.56386309 20.64006 -9.75617 7.501088 

Chen, Roll Ross 1.295786306 30.94118 -14.1748 11.91972 

Single-Index (Unadj) 0.109415755 31.10052 -15.4408 13.18577 

 

It is clear that industry averaging provides the best out of sample result with only a utility loss of 0.468.  This is 

consistent with other findings such as Elton and Gruber (2006).  Similarly, multi-factor models can actually underperform 

a single factor adjusted model.  This can be primarily attributed to great in-sample performance but poor out-of-sample 

due to estimation error as well as input forecast errors. 

Portfolio Performance 

Much research recently has found that often an equally weighted portfolio often outperform various optimization 

techniques.  We will call this the 1/N rule and see how our optimized portfolio has performed compared to 1/N in terms 

of return, variance and Sharpe ratio.  The Sharpe ratio will be defined as 

𝑆𝑟 =
𝑅𝑝
̅̅̅̅ − 𝑅𝑓

̅̅ ̅

𝜎𝑝
 

Where 𝑅𝑓
̅̅ ̅ is the mean 10-year U.S risk-free yield between 2010-2014 (0.21%). 

Model Mean Return Variance Sharpe 

Naïve Model 0.890076122 8.331002 0.308375 

Constant Averaging 0.773140317 7.120551 0.289735 

Industry Averaging 0.711590277 6.869401 0.2715 

1/N 0.998062222 15.02024 0.257525 

Chen, Roll Ross 1.295786306 30.94118 0.232951 

S&P 500 Index 0.92955556 16.5262627 0.228659 

http://web-docs.stern.nyu.edu/salomon/docs/derivatives/S-DRP-04-02.pdf


Fama & French 0.56386309 20.64006 0.124113 

Single-Index (Unadj) 0.109415755 31.10052 0.01962 

Single-Index (Adj) -0.20882026 15.5459 -0.05296 

 

It is clear that through both performance measures, the industry, constant and naïve model all out-perform the 

single/multi-factor models.  Below is a historical out-of-sample risk premia performance of the top optimized portfolio in 

comparison with 1/N and S&P 500. 

 

Some important things to note: 

1. The 1/N portfolio tends to track the S&P 500 closely, this is expected as usual since our portfolio is a large 20 

stock portfolio.  The 1/N portfolio outperformed the S&P 500 until midst 2013 

2. The Naïve model out-performed all other measures between 2011 and 2012.  This can primarily be attributed to 

its large 28% investment in gold during the bull rally and its heavy upscaling in specific consumer staples. 

3. Industry model performed the worst but has the least volatility.  It is mainly invested in consumer staples, scaled 

down on gold and took positions in the energy sector.  It outperformed the benchmark and 1/N portfolio until 

Gold prices started declining. 



Conclusion 

 Through this study, I have concluded that, in align with previous literature, the constant correlation and industry 

correlation model are best performers in portfolio optimization and modelling future covariance matrix.  Furthermore, 

the factor models tend to perform poorly in out of sample estimation techniques mainly due to parameter estimate 

errors and future forecast errors.  Far more research is needed to improve portfolio optimization such as extra-market 

covariance modelling from firm characteristics, analyst consensus from The Fund, hybrid models, shrinkage of different 

efficient frontier choices, Black-Litterman model, industry separate optimization, Sharpe Ratio optimization, etc. This 

paper offered a preliminary survey of available models to help with portfolio managers improve out-of-sample 

performance. 


